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Quantum condensation is used here as the basis for a phenomenological theory 
of superfluidity and superconductivity. It leads to remarkably good calculations 
of the transition temperatures Tc of superfluid 3He and 4He, as well as a large 
number of cuprate, heavy fermion, organic, dichalcogenide, and bismuth oxide 
superconductors. Although this approach may apply least to the long-coher- 
ence-length metallics, reasonably good estimates are made for them and chevral 
superconductors. Tc for atomic H is estimated. T c can be calculated as a 
function of number density or density of states and effective mass of normal 
carriers; or alternatively with the Fermi energy as the only input parameter. 
Predictions are made for a total of 26 superconductors and four superfluids. An 
estimate is also made for coherence lengths. 

1. I N T R O D U C T I O N  

The enigma o f  high-temperature superconductivi ty has produced a 
deluge o f  conceivable theories too numerous  and diverse to list here. This 
plethora o f  theories are all plagued by the same problem that  no critical 
temperatures T~ can be calculated until bo th  the interaction and its strength 
are known.  In  the case o f  the low-T c metallics, where the phonon  interac- 
t ion and the BCS theory (Bardeen et  aL, 1957) are well formulated,  
calculations are exceedingly difficult (Carbot te ,  1990) and consume consid- 
erable time and energy due to their complexity. In conventional  BCS 
superconductors ,  Cooper  pairs bound  by p h o n o n  interaction form with 
zero total spin and zero total angular  m o m e n t u m  (s-wave), and BCS Tc 
calculations give satisfactory agreement  with experiment for mona tomic  
metals and for some ordered alloys. However ,  they are inapplicable to 
materials beyond the typical parameter  ranges. 
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BCS may also be inapplicable to a large number of both proposed and 
known unorthodox superconductors and superfluids. It appears inappro- 
priate to the quasi-one-dimensional organic superconductors with side 
chains conceived by Little (1964), and possibly the hydrides proposed by 
Overhauser (1987). The recently discovered unorthodox superconductors 
such as the cuprates, bismuth oxides, organics, and at least some heavy 
fermion superconductors fall outside the domain of the BCS theory be- 
cause they have non-phonon-pairing interactions. Recently, Hasuo et  al. 
(1993) reported evidence of a Bose-Einstein (BE) condensation of biexci- 
tons in CuC1. The presence of a weak population of biexcitons in the K = 0 
ground state seems to play an important role in the nucleation of the 
superfluid transition. 

In superfluid 3He the non-phonon spin-flip-mediated pairing has been 
clearly identified, and pairing is in the triplet state of spin 1 with p-wave 
total orbital angular momentum (Leggett, 1975). There is evidence for 
d-wave rather than s-wave pairing in the cuprates (Coffey and Coffey, 
1993). Pairing in some heavy fermion materials appears to be primarily 
d-wave-mediated by antiferromagnetic fluctuations with the triplet spin 
state as for UPt3. There was a time when anything other than zero spin and 
zero angular momentum would have been inconceivable to many. 

With rare exceptions, such as the prediction of superconductivity in 
high-pressure phases of materials such as Si by Cohen and his colleagues 
(Erskine et  ai., 1986), the discovery of unorthodox as well as conventional 
superconductors has come neither from basic theory nor from guidance 
from the microscopic principles of superconductivity. One generalization 
that applies to the new materials is that they are increasingly complex. This 
may just be an example of the power of large numbers, since the number 
of possibilities increases greatly with complexity as the building blocks go 
from unaries to binaries to ternaries to quaternaries, etc. However, there 
may be an optimum degree of complexity. London (1937) speculated that 
life may depend on high Tc (Rabinowitz, 1990a). Superconductivity in the 
simplest materials may not at all be representative of superconductivity in 
its entirety. The only significance that the earliest discoveries of supercon- 
ductivity were in the simplest materials may simply be because they were 
the easiest to work with, rather than that this form of superconductivity is 
the most prevalent. A possibility worth considering, though it does not 
appear to be verifiable, is that all conducting materials could become 
superconducting if taken to sufficiently low temperatures. 

A seminal generalization is that to be superconductors or superfluids 
regardless of their simplicity or complexity and the nature of the pairing 
mechanism, they must all exhibit quantum condensation in phase space. In 
my opinion, this is the condition that the entire diversity of materials and 
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theories must obey. My position is that this condition is sufficient for 
approximate calculations of To, without the need for knowing the interac- 
tion. The interaction-free approach initiated by Rabinowitz (1987, 1988, 
1989a,b, 1990b, 1993a,b) leads to simple formulas which work exceedingly 
well with great computational ease. They can be of benefit as a guide to the 
development of more rigorous and complete theories, as well as in the quest 
for new and better superconductors. 

V(nB/g) 
V S G3D dE 

Equation (3) implies 

2. QUANTUM CONDENSATION 

Quantum condensation in phase space leads to the formation of a 
quantum fluid which can exhibit macroscopic quantum effects such as 
superconductivity and superfluidity. In simple terms, it is the multiple 
occupancy (degeneracy) of available energy levels. Previously, I used the 
condition (Rabinowitz, 1989a) that the thermal de Broglie wavelength 2 
must be greater than the interparticle boson spacing d. For greater general- 
ity, and to be more explicit, let us allow that there may be more than one 
kind of boson associated with different spin states 

2 --> 2 d = 2  (1) 

where nB is the total 3D number density of bosons, and g is the spin 
degeneracy, so that nB/g is the number density of bosons of a given kind. 

Let us see that equation (1) is equivalent to multiple occupancy of 
energy levels. Briefly, without going into a lot of extraneous detail, for a 
free carrier model the 3D density of states for both spins (per unit energy 
per unit volume) is 

E 1/2 (2m~3/2 

where m is the effective mass and E is a given energy level. We require that 
the number of specific particles per energy level be > 1: 

= g Le3/2 \ 2 m /  -J = ~ > 1 (3) 

? / -  1/3 
2 -> 2 = 2d (4) 

in agreement with equation (1). Alder and Peters (1989), using quantum 
Monte Carlo calculations, have shown the variability of the coefficient 
linking 2 and d. 
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3. TRANSITION TEMPERATURE 

3.1. Supertluid Liquid 4He 

The de Broglie wavelength at the thermal energy ( f /2 )~Tc  is 

2 = h/[2mB(f /2)xTc]  (5) 

ma is the effective boson mass, f is the degrees of freedom, and x is the 
Boltzmann constant. Combining equations (1) and (5), we obtain 

T~ E - < -  (6) 
12mx 

in close agreement with the BE condensation temperature (Betts, 1969), 
where the 12 is replaced with 11.92. Equation (6) works well for 4He, which 
is a boson of zero spin with g = 1, m ~ 6.7 • 10 -24  g, and nB= 2.2 • 
1022/cm 3, yielding T~ E ~ 3 K, in good agreement with the superfluid transi- 
tion temperature of 2.17 K for LgHe (Rabinowitz, 1993a). 

3.2. Superfluid Atomic H 

Helium is unique among the elements as the only one exhibiting 
superfluidity, since it remains in the liquid state down to the lowest 
temperatures obtainable, because of its very weak interaction, and because 
its zero-point amplitude is high enough to keep it from solidifying. Al- 
though hydrogen has a higher zero-point energy, it solidifies because it has 
much stronger interaction. 

Since hydrogen is a boson, let us see roughly at what temperature LH2 
might become a superfluid if it could remain a fluid. Equation (6) says that 
the best we could hope for would be T~ E -~ 6 K for n ~ 2 x 1022/cm 3 and 
m = 2(1.67 x 10 -24  g).  Since this is below the solidification temperature for 
H2 of 14.1 K, superfluidity appears out of the question for LH2. However, 
recent cooling achievements for H atoms of T ,~ 100 #K (Doyle et al., 
1991) at a density of n = 8 x 1013/cm 3 present two exciting possibilities for 
superfluidity. For the singlet state, at this density T~ E ~ 29.5 #K, not that 
much lower than what has already been achieved. For a triplet state, 
T BE ~ 14.2 #K. 

3.3. Superfluid Liquid 3He 

Using this paradigm, we can derive Tc for superfluid 3He. This 
derivation is more general and different than previously done by Rabino- 
witz (1993a). 3He is a fermion of spin 1/2. It obeys the Pauli exclusion 
principle, and hence only a fraction of the fermions ~ xT~/EF are incipient 
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Cooper pairs at Tc, where 

= (h2n2/3"~ 
EF \ ~ j  (3/re) 2/3 (7) 

is the Fermi energy, m is the fermion effective mass, and n is the number 
density of fermions. This is similar to electrons in which only ",~xT/EF 
participate in the electron specific heat. The number of fermions involved is 
the number of k values within a shell Ak of energy width 

h2k 2 h2(kF - Ak) 2 
xTcF ~ (8) 

2m 2m 

where k = 1/~ =p/h is the wave vector. For a roughly spherical Fermi 
surface the number density of bosons of a specific kind is 

1 Ak(4nk~) 3Ak 
/ /13--  2 4 3 H ~kFg  2--~Fg n (9) 

Combining equations (8) and (9), we obtain 

3xTc3 
nB = (10)  

For layered materials the Fermi surface is cylindrical, yielding a co- 
efficient of �89 instead of 3 in equation (10). However if the fraction of 
fermions is ~3KTc/Er rather than ~KTc/EF, then a cylindrical Fermi 
surface would also yield equation (10). 

For 3He pairs, 2 is given by equation (5) with mB = 2m, and f-> 3 in 3D. 
Combining equations (1), (5), (7), and (10), we obtain 

To3 = 2.77 x 10 -3 h 2 n 2 / 3  - 2.28 x 10 -2 Tf3D mxg2 g2 (11) 

where T 3D = Ev/rc. 
For 3He pairs, g = 3, since the spin = 1. One may calculate the number 

density of L3He as n = 2.36 x 1022/cm 3 at the solid-liquid interface from 
both the independent data of Wheatley (1975) at 34.36 bar and of Greywall 
(1986) at 34.99 bar. At these pressures, Wheatley gives m = 6.22m 3He and 
Greywall m=5.85m3He. Using Wheatley's data, equation (11) yields 
To3 = 2.6 mK, in excellent agreement with his experimental value of 2.6 inK. 
Using Greywall's data, equation (11) yields To3 = 2.8 mK, also in excellent 
agreement with his experimental value of 2.5 inK. A private communication 
by D. D. Osheroff (1993) indicates that the originally measured value of 
Tc3 = 2.6 mK (Osheroff et al., 1972) should be corrected to To3 = 2.5 inK. 

Original predictions of T~ were ~0.1 K, and then fell to 10-6-10 -9 K 
when the 3He superfluid transition was not found down to 0.01 K 
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(Rabinowitz, 1993a). My theory makes the prediction that the superfluid 
transition temperature for dilute solutions of 3He in superfluid 4He is 
,-, 1-10 #K (Rabinowitz, 1993a). Winterberg (1989) has speculated on the 
possibility of a superfluid BE condensation of photons. 

4. HIGH-TEMPERATURE SUPERCONDUCTIVITY 

We can use equation (11) as the starting point for deriving Tc for 
high-To superconductors as well as other superconductors which exhibit a 
2D layered structure. Combining equations (1), (7), (10), and (11) with 
f = 2 in equation (5) yields 

h 2n2/3 T2F D T~ D 
T~2 = 4.15 x 10 -3 mxg 2 = 5.22 x 10-2 n2/-~g2 = 3.42 x 1 0 - 2 - ~  (12) 

where g 1 for singlet pairing (spin 0) superconductors, -!-2o_ ~-2o/~ = = x F - -  .L ,  F I n , ,  

and 6 is the average plane spacing. For direct input of experimental data, 
equation (12) can also be written in terms of the three-dimensional density 
of electronic states in the normal phase for both spins G3I)(#) at the 
chemical potential # (Fermi energy): 

Tc2 = 2.71 x 10 -5 h6[G3D(/z)]2 (13) 
Km3g 2 

However, equation (12) in terms of the single input parameter T~ D is 
the simplest possible expression for T~, when it is available. In my theory, 
the quantity hEn2/3/mK always enters in this form, making possible its 
replacement with T~ D. Unfortunately, a rich source of valuable data 
compiled by Harshman and Mills (1992) (HM) only lists T~ D for a small 
number of superconductors. Instead they list most in terms of T 2D, which 
is why equation (12) is also given in terms of T 2D. 

For the metallic superconductors, we can make a small correction to 
the equation for Tc previously derived [Rabinowitz, 1989b, equation (5)]. 
The 3/4 in equation (10) above enters in as (3/4) 2 times the original 
expression and including g with f = 3 yields 

h2n 2/3 T~ D 
Tcm= 4.07 x l0 -5 - -  = 3.26 x 10 -4 mKg2 g2 (14) 

Table I tabulates the predicted transition temperatures T pred and the 
necessary input data for a wide variety of superconductors for compari- 
son with the experimental values T~c xp. 3He is calculated from equation (11) 
using Greywall's data. H and 4He are determined from equation (6). Six- 
teen superconductors (Nos. 6-9 and 19-30) are calculated from equation 
(12) inclusive of all the cuprate, organic, bismuth oxide, dichalcogenide 
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(with g = 3) superconductors from data in HM. No. 5 (heavy fermion with 
g = 3), and Nos. 2. 17 and 18 are calculated from equation (11) as they are 
3D superconductors. The remaining seven metallics are determined using 
equation (14). In all cases every single superconductor in HM is presented 
for which there are sufficient data to make a calculation, which accounts 
for all the entries except H, He, and the six pure metals. The EF for the six 
pure superconducting metals can be found in most solid-state textbooks. 
The data indicate that for the metaUics my simple theory requires modifica- 
tion with increased convolution. Although three significant figures are not 
usually warranted, they are presented in case they might be needed for 
computational purposes. The agreement between T~/~d and T~ xp is excep- 
tionally good for 21 out of 28 superconductors-fluids. T~ xp is not known for 
two entries. The agreement is even better than the table shows when Tc is 
calculated directly from n and m--possibly because of different uncertain- 
ties in T 2D and 6 than ascribed to them. 

5. COHERENCE LENGTHS 

The concept of coherence applies both to particles and to waves. From 
a classical point of view, we could focus on the coherent motion of electron 
pairs in superconductivity or neutral carriers in superfluidity. In the BCS 
theory, the correlated motion of the electrons in a Cooper pair with equal 
and opposite momenta allows the center of mass to move undisturbed 
because as one electron scatters, the other is required to scatter in the 
opposite direction. Quantum mechanically the concept of coherence applies 
to a correlation between phases of the wave function at all points in space. 
The particles have condensed into the ground state described by one wave 
function. It is as if they were all acting like a single body. With the 
low-energy states filled, it is as if there were no available states to fall down 
to, so scattering cannot lead to energy loss in superconductors. 

In simple physical terms, the concept of coherence length 40 can be 
looked at in three different ways. The simplest way is to think of 40 as the 
rms distance between the electrons in a Cooper pair as they oscillate 180 ~ 
out of phase about their center of mass. A second physical meaning of 4o 
relates to the quantum of flux (fluxoid) in a superconductor or vortex in a 
superfluid with radius ~ 40. 

The third is related to the fact that the superconducting electrons are 
in a more ordered (more coherent) state than the normal electrons. Pippard 
identified the change in density n~ of superconducting electrons with this 
order. In the metallics 40 ~ 103-104~k implying that there are billions of 
electron pairs within a volume 403. The long 4o with large overlap of pairs 
makes pair-pair interactions greatest in the metallics, and least applicable 
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to the interaction-free approach. In the cuprates Go ,~ 5-20 A, so there are 
only a small number of electron pairs within a coherence volume with little 
pair-pair interaction. 

Although the primary motivation of my approximate theory is to 
calculate transition temperatures, a fringe benefit is that it can also yield 
approximate values of the low-temperature coherence length ~o that agree 
roughly with the metallics and quite well with the cuprates. In simple terms 
the uncertainty principle 6E 6t >- h/2 can be applied in the region of the 
low-temperature energy gap 2A = 6E, and 6t = ~o/VF, where VF is the Fermi 
velocity. This implies that ~0 = hvF/4A. Rigorously one would get 

~ _ hVF 
~  ~A (15) 

For the metallics BCS has 2A = 3.52kT~. Combining this with equa- 
tions (7) and (14) in (15) gives 

~r-r = 700n - 1/3 (16) 

With n ~ 1023/cm 3, equation (16) gives ~met~ 2000A, in fair agreement 
with the experimental range of ,-~ 103-104 ~. 

For the cuprates 2A ,~ 8kT~ (Rabinowitz, 1989a). Combining this with 
equations (7) and (12) in (15) gives 

~cupo = 3n -1/3 (17) 

With n ~ 1022/cm 3, equation (17) yields ~meto ~ 14 A, in excellent agreement 
with the experimental range of ,,~ 5-20 A. 

6. RETROSPECTION AND CONCLUSION 

Although Ogg (1946) first proposed electron pairs for superconductiv- 
ity, electron pairs should rightfully be called Cooper pairs. The pairing idea 
was proposed many times (Blatt, 1964) long before Cooper (1956) pro- 
posed it. Nevertheless; Cooper was the first to quantify the problem of two 
fermions interacting in the presence of a filled Fermi sea of N -  2 other 
fermions. 

My analysis clearly differs from that of Bardeen et al. (1957). BE 
condensation approaches to superconductivity were first presented by 
Schafroth (1955) and Schafroth et al. (1957) (SBB) and more recently by 
Friedberg and Lee (1989). These approaches differ from mine, and appear 
not to have been successful in predicting Tc's. (Standard approaches have 
also been unsuccessful with high T/s0 I was not aware of the SBB work 
when my earlier papers were written. They showed that if the size of the 
electron pairs is less than the average distance between them, and if other 
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conditions are fulfilled, the system has properties similar to that of a 
charged Bose-Einstein gas, including a Meissner effect and a critical 
temperature of condensation. However, the SBB approach did not lead to 
Tc predictions, and is much more elaborate than my theory. 

The original BCS paper (Bardeen et al., 1957) was not without some 
shortcomings. It did not predict the mixed state of type II superconductiv- 
ity. It incorrectly predicted that a small amount of impurity scattering 
would greatly reduce To. Nevertheless, it proved to be extremely valuable. 

The simplicity of my theory is both a source of strength and weakness. 
The simplicity invariably leads to limitations. Nevertheless it has impressive 
power to correlate data over a wide range without explicitly introducing a 
pairing mechanism. Perhaps this should not be entirely surprising, as Tc 
itself is a measure of the interaction strength. In this model, Tc enters into 
the equations in two different ways so that it is possible to solve for T~. It 
is a kind of self-consistency requirement that the number of pairs that BE 
condense (i.e., those having a de Broglie wavelength comparable to their 
average separation) is proportional to the condensation temperature itself. 
This may be why the transition temperature can be obtained without prior 
knowledge of the interaction mechanism presenting a necessary, but not 
sufficient condition for superconductivity. Eventhough thermodynamically 
there is only one Tc for a given material, T~ocl/m suggests that a 
significantly higher effective mass in the c direction for layered 2D materials 
than in the ab plane implies that there is an intrinsically lower T~ in the c 
direction than T ab in the ab planes. This would be like having parallel 
superconducting sheets with normal connections in the perpendicular direc- 
tion for T ab > T > T~. However, coupling of the ab planes such as by the 
Josephson and/or proximity effects may mask the difference between T ab 
and Tc ~. Resistivity measurements a s  a function of T in the ab and c 
directions for a single crystal should be able to detect a difference in To. 

ACKNOWLEDGMENTS 

I wish to express my heartfelt appreciation to Tom McMullen for 
bringing the Harshman and Mills paper to my attention, for helping me 
with the numerical calculations, for beneficial discussions, and most of all 
for his integrity, his valuable interest, his encouragement, and his support. 

REFERENCES 

Alder, B. J., and Peters, D. S. (1989). Europhysics Letters, 10, 1. 
Bardeen, J., Cooper, L. N., and Schrieffer, J. R. (1957). Physical Review, 108, 1175. 
Betts, D. S. (1969). Contemporary Physics, 10, 241. 



Phenomenological Theory of Superfluidity and Superconductivity 399 

Blatt, J. M. (1964). Theory of Superconductivity, Academic Press, New York. 
Carbotte, J. P. (1990). Reviews of Modern Physics B, 45, 1027. 
Coffey, D., and Coffey, L. (1993). Physical Review Letters, 70, 1529. 
Cooper, L. N. (1956). Physical Review, 104, 1189. 
Doyle, J. M., Sandberg, J. C., Yu, I. A., Cesar, C. L., Kleppner, D., and Greytack, T. J. 

(1991). Physical Review Letters, 67, 603. 
Erskine, D., Yu, P. Y., Chang, K. J., and Cohen, M. L. (1986). Physical Review Letters, 57, 

2741. 
Friedberg, R., and Lee, T. D. (1989). Physical Review B, 40, 6745. 
Greywall, D. S. (1986). Physical Review B, 33, 7520. 
Harshman, D. R., and Mills, A. P. (1992). Physical Review B, 45, 10684. 
Hasuo, M., Nagasawa, N., Itoh, T., and Mysyrowicz, A. (1993). Physical Review Letters, 70, 

1303. 
Leggett, A. J. (1975). Reviews of Modern Physics, 47, 331. 
Little, W. A. (1964). Physical Review A, 134, 1416. 
London, F. (1937). Journal of Chemical Physics, 5, 837. 
Ogg, R. A. (1946). Physical Review, 69, 243. 
Osheroff, D. D., Gully, W. J., Richardson, R. C., and Lee, D. M. (1972). Physical Review 

Letters, 29, 920. 
Overhauser, A. W. (1987). Physical Review B, 35, 411. 
Rabinowitz, M. (1987). In Proceedings: EPRI Workshop on High-Temperature Superconduc- 

tivity. 
Rabinowitz, M. (1988). In Proceedings: EPR1 Conference on Electrical Applications of 

Superconductivity. 
Rabinowitz, M. (1989a). International Journal of Theoretical Physics, 28, 137. 
Rabinowitz, M. (1989b). Physica C, 162-164, 249. 
Rabinowitz, M. (1990a). Modern Physics Letters B, 1990, 233. 
Rabinowitz, M. (1990b). In Advances in Cryogenic Engineering, Vol. 36A, Plenum Press, New 

York, p. 21. 
Rabinowitz, M. (1993a). International Journal of Theoretical Physics, 32, 565. 
Rabinowitz, M. and McMullen, T. (1993b). Applied Physics Letters, 63, 985. 
$chafroth, M. R. (1955). Physical Review, 100, 463. 
Schafroth, M. R., Butler, S. T., and Blatt, J. M. (1957). Helvetica Physica Acta, 30, 93. 
Wheatley, J. C. (1975). Reviews of Modern Physics, 47, 415. 
Winterberg, F. (1989). Zeitsehriftf~r Natusforschung, 44a, 243. 


